

REGEN-Seminar

BTU Cottbus, Lehrstuhl Angewandte Physik/Sensorik

New developments in the field of energy storage 0–3 composite supercapacitors

Hartmut S. Leipner

Martin-Luther-Universität Halle-Wittenberg

gründerwerkstatt NANOSTRUKTURIERTE WERKSTOFFE

All rights reserved © CMAT Halle 2013

Central lab units (CMAT-MLU Halle)

- Nanostructuring: lithography, thin film deposition, device prototyping
- Nanoanalysis: electron microscopy, optical characterization, positron annihilation

Research disposal area (Bio-Nano Center)

for physists, chemists, materials scientists, biologists, pharmacists MLU, MPI, Fraunhofer, TGZ (KMU)

Renewable energy materials

Silicon-based nanostructured thin film + materials as functional elements for nextgeneration solar cells

- Si and Si–Ge thin films for thermoelectric • applications
 - ForMa UNTERN ionsinitiative REG

 New supercapacitors as energy storage devices

GEFÖRDERT VOM

Bundesministerium für Bilduna und Forschung

Equipment

Nanostructuring

Analysis

Cleanroom class 10/100/10000

- Various electron microscopes
- Raman microscopy, ellipsometry
- Atomic force microscopy
- Electrical/thermal transport measurements

Renewable energies = Direct energy from the sun

- Oil resources: 3 trillion barrels (4 · 10¹⁴ kg) ≜ energy of 2 · 10²² J; supplied from the Sun in 1½ days
- Amount of energy humans use annually: 5 · 10²⁰ J, delivered to Earth by the Sun in 1 h
- Enormous power of the Sun continuously delivered to Earth: 1 10⁵ TW; human civilization uses currently 10 TW

Energy from renewable resources

Climate discussion is about CO₂.

- Basic orientation to energies from renewable resources needed
- Grid consolidation, distributed energy supply
- Energy efficiency, saving
- Further development of renewable energies: Photovoltaics, solar thermal energy, wind, water, biofuel
- Requirement for new materials

3月11日

Nanostructured materials

- Better energy storage devices are needed for sustainable energy supply.
- New materials are the key for basic improvements.
- Nanoscaled materials can be precisely adopted for energy harvesting, transformation and storage
- Excellent properties for the selection of electrodes, electrolytes or dielectrics
- Nano-scaled electrolytes, nanoelectrodes for lithium ion batteries, supercapacitors, fuel cells
- Concept followed for electrochemical, as well as for electrostatic storage

Energy storage

- Renewable energy sources: highly discontinuous
- Various energy storage concepts
 - Thermal and thermochemical storage (water, water–gravel, latent heat)
 - Chemical storage (hydrogen)
 - Mechanical storage
 (fly wheel, pump storage station, compressed air)
 - Electrochemical storage (lead, lithium ion, redox flow, NaS battery)
- Advantages ↔ disadvantages
 - → no single solution for all applications

Ragone diagram

Time scales

10 11 12

- Large time scales (seconds to weeks)
- Short-time storage
 (fluctuations in the grid, grid management, guarantee of supply)
- Middle-range storage (electromobility)
- Long-time storage
 (e. g. longer periods without wind)

Need for energy storage

Estimated fluctuations in the residual power for 2020 [J Quentin 2011]

Electrical storage

Characteristics

- Energy density, power density, storage time, voltage
- industrial processing, prize, weight
- Electrochemical devices (batteries, accumulators) mainly used
- Disadvantages
 - Limited lifetime, temperature range
 - Memory effect
 - Problems with overloading, deep discharge
 - Low charging speeds

Selfdischarge	Battery:		1 – 5 %	per year
	Accum:	Li Ion: Lead: NiCd:	2 % 2 – 30 % 15 – 20 %	per month

Lithium ion battery

Scheme of a classical LIB [Wallace 2009]

Classical electrode process

(Intercalation)

 $Li_x M \leftrightarrow M + x Li^+ + x e^-$ (M – metal)

Capacitors

Capacitance *C* = Amount of charge stored per unit voltage

$$C = \varepsilon_{\rm r} \varepsilon_0 \frac{A}{d}$$

 ε_0 vacuum permittivity $\approx 9 \cdot 10^{-12}$ F/m ε_r relative static permittivity of the dielectric (sometimes called dielectric constant)

Energy stored:
$$E = \frac{1}{2}CU^2 = \frac{1}{2}\varepsilon_r\varepsilon_0\frac{A}{d}U^2$$

Double-layer capacitor

Capacity

$$C = \frac{\varepsilon_{\rm r} \varepsilon_0 A}{d} \qquad \frac{C}{A} = \frac{\varepsilon_{\rm r} \varepsilon_0}{p \ln \frac{p}{a_0}}$$

(*p* pore radius, a_0 effective ion size)

$$E = \frac{1}{2}CU^2$$

Charged double-layer capacitor with two double layers in series (i. e. the interfaces electrode–charged layer and charged layer–electrolyte) with a large specific surface.

[Scherson, Palenscár 2006]

Capacity

10 µm

Graphite particles with a large specific surface [Takamura *et al*. 2007]

Commercially available standard capacitors

Ceramic capacitors Thin-film polymer capacitors based e. g. on barium titanate e.g. PET, PP + high permittivity + high voltage + thermal stability + low conductivity + allow high frequencies + simple shapes low permittivity – brittle **Composite capacitors**

Composite dielectrics

Mixing rules

Simple models

- Serial or parallel connections
- Isotropic statistic distribution of spherical particles in a homogeneous matrix

Composite capacitors

Advantages of composite supercapacitors

- Robust, negligible aging, high lifetime
- High charging voltages
- Thermal stability (operation temperatures > 60 °C possible
- No cooling
- High charging or discharging rates
- High efficiency
- Modular structure
- Environmentally friendly
- Reasonable energy and power density

Ceramic particles

◆ BaTiO₃

- Ferroelectric, $\varepsilon_r > 2000$
- Phase transitions
- ◆ CaCu₃Ti₄O₁₂
 - Non ferroelectric
 - Giant $\varepsilon_r > 100\,000$
- Different synthesis routes
 - Oxide mixing, Pecchini, Oxalate, Sol–Gel
 - Particle size 50...100 nm

Permittivity ε ' of single crystal CCTO as a function of the temperature *T* and the frequency ν [P Lunkenheimer *et al.* (2010)]

Matrix and shell components

- Polymer films
 - PVDF
 - P(VDF-HFP)
 - Poly(bisphenol A-carbonate)
- Glasses
- Preparation methods
 - sintering, spin coating, spray deposition
- Surface coating
 - passivation of the surface, block aggregation/percolation, minimum of leakage current, high breakdown voltage
 - phosphonic acids; E-glass

Thin film preparation

homogeneous, reproducible, scalable, cheap

- Single films, lab stage
 - Spin coating
 - Established for homogeneous solutions
 - More difficult for composites
 - Thickness profile may become inhomogeneous
 - Problems with rectangular substrates, geometry effects
 - Molding, pressing, sintering
- Large areas with linear coating, spray deposition
- Transition to multilayers

Next targets of the Super-Kon project

- ◆ Proof-of concept → development of a demonstrator
- Application for energy harvesting purposes
- Industry-grade environmental tests
 - Influence of temperature, moisture, vibration
 - Long-time stability
 - Compliance with standards
- Local breakdown and defect analysis

Technology roadmap

Technology roadmap with the development of the amount of stored energy in nanocomposite supercapacitors and possible applications in each state of the development

"Did anyone call for high-power, infinitely rechargeable electrical energy storage?"

Thanks to the Super-Kon team:

H. Beige, A. Buchsteiner, M. Diestelhorst,
S. Ebbinghaus, C. Ehrhardt, J. Glenneberg,
T. Großmann, S. Lemm, W. Münchgesang,
C. Pientschke, K. Suckau, G. Wagner, M. Zenkner

References

- J Quentin: Energie-, umwelt- und klimapolitische Gründe gegen den weiteren Zubau von Kohlekraftwerken in Deutschland. Deutsche Umwelthilfe 2011.
 - P Lunkenheimer et al: Eur Phys J Spec Top **180** (2010) 61.
- www.sachsen-anhalt.de/fileadmin/Elementbibliothek/
 Bibliothek_Politik_und_Verwaltung/Politik%2BVerwaltung/Startseite_2012/
 Zusammenfassung_Energiestudie.pdf
 - gravityandlevity.wordpress.com

10

1

1

1

.....

- smallbiztrends.com/wp-content/uploads/2010/08/time.jpg
- www.keyboardathletes.com/wp-content/uploads/iStock_000009554710XSmall.jpg
- www.youtube.com/watch?v=l2RMnmjQynM&feature=related
- hondaoldies.de/Korbmacher-Archiv/Technik/ucap.htm
- O Wiener: Ber Verh Königl-Sächs Ges Wiss Leipzig (1910) 256.
- Z Hashin S Shtrikman: J Appl Phys 33 (1962) 3125.
- DA Scherson A Palenscár: Electrochem Soc Interf. 17–22 (2006).
- GW Crabtree, NS Lewis: Phys today 3 (2007) 37.
- GG Wallace et al: Mater today **12** (2009) 20.
- HD Abruña et al: Phys today **61** (2008) 43.
 - T Takamura et al.: Electrochim. Acta 53 (2007) 1055.